高通量植物光合表型测量仪 LIFT

高通量植物光合表型测量仪 LIFT

高通量植物光合表型测量仪 LIFT是一种可以在3m远处对冠层光合作用进行“遥测”的荧光仪。采用软件控制的激发光源阵列,通过控制脉冲/直流模式控制光合器官的状态,同时记录光系统II中叶绿素天线色素放射出的荧光信号变化过程。测量的荧光瞬变可以使用LIFT-FRR软件进行处理,可用来进行大量生物物理学特征的量化,从而获取光合作用特征、光合响应和光合性能矩阵。

测量时LIFT发射到植物冠层上一个直径约15cm的光斑,仪器带动这个光斑以不超过5.4km/h的速度行进,并连续采集这个宽度15cm的冠层条带上的光合作用参数。此外,LIFT还配置GPS传感器,可以自动对记录的光合表型数据关联GPS信息

LIFT可以固定在某处对单个目标物连续测量,也可以固定到镜头支架上,根据预设程序对一系列目标物进行扫描测量,同时还可以固定到各种移动平台上,在温室或田间实现高通量光合表型测量(可达5.4 km/h)。

Campus Kleinaltendorf Mai 2018

kl_altendf_07_15_022-水印

功能特性

  • 快速“遥测”冠层光合表型
  • 可以集成到各种高通量表型平台上
  • 测量功能包括:
    • 光系统II 功能光吸收截面积
    • 光合电荷分离产量
    • 光合电子传递动力学
    • 光系统II 反应中心能量转换率
    • 叶绿素荧光非光化学淬灭动力学与振幅
    • PQ库大小
    • 光系统II 受体侧类胡萝卜素淬灭
    • 光系统II 供体侧 P680+淬灭
    • 电子传递速率(ETR)与辐照度关系的参数,如初始斜率、饱和点、最大电子传递水平
    • 不同光照水平条件下的光合响应

技术发明人

Zbigniew Kolber博士是一位波兰裔美籍科学家、发明人,他于1980年代加入海洋光合作用领域大神Paul Falkowski 院士(H指数125,文章总引用数63000+,截止2018年12月Google Scholar数据)实验室,并陆续发明了海洋浮游植物光合测量领域居绝对支配地位的FRR荧光仪和FIRe荧光仪,在国际海洋学界大名鼎鼎。

Kolber博士先后在Brookhaven国家实验室、罗德岛大学、蒙特雷湾海洋研究所(MBARI)、加州大学圣克鲁斯分校等单位工作,发表了大量的高水平研究论文(总引用数9000+,ResearchGate数据),包括

  • 5篇Nature
  • 5篇Science
  • 6篇Photosynthesis Research
  • 5篇Limnology and Oceanography
  • 3篇Plant Physiology
  • 3篇BBA
  • 2篇Global Change Biology
  • 2篇Journal of Phycology

在澳大利亚鼎鼎大名的科学家、三国院士Barry Osmond教授的建议下,从事海洋光合作用研究的Kolber博士于上世纪末开始着手设计能够“遥测”高等植物的叶绿素荧光仪LIFT。叶绿素荧光“遥测”是一个国际性的难题,Kolber博士在国际上第一次实现了主动激发叶绿素荧光的遥测,并花了近20年的时间不断改进、完善并商业化,进而受到Julich植物表型中心、澳大利亚CSIRO、澳大利亚国立大学等国际主流表型研究单位的追捧。

代表文献

  • Osmond B, Chow W S, Pogson B J, Robinson S A, Probing functional and optical cross-sections of PSII in leaves during statetransitions using fast repetition rate light induced fluorescence transients.Functional Plant Biology, 2019, https://doi.org/10.1071/FP18054.
  • Keller B, Vass I, Matsubara S, Paul K,Jedmowski C, Pieruschka R, Nedbal L, Rascher U, Muller O, Maximum fluorescence and electron transport kinetics determined by light-induced fluorescencetransients (LIFT) for photosynthesis phenotyping. Photosynthesis Research, 2018,https://doi.org/10.1007/s11120-018-0594-9
  • Muller O, Keller B, Zimmermann L, et al., Field Phenotyping and an Example of Proximal Sensing of Photosynthesis Under Elevated CO2. IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, 2018, pp. 8252-8254.
  • Murchie E H, Kefauver S, Araus J L, Muller O, RascherU, Flood P J, Lawson T. Measuring the dynamic photosynthome, Annals of Botany, 2018, 122(2): 207–220.
  • Wyber R, Osmond B, Ashcroft M B, Malenovský Z,Robinson S A. Remote monitoring of dynamic canopy photosynthesis with high time resolution light-induced fluorescence transients, Tree Physiology, 2018, 38(9):1302–1318.
  • Osmond B, Chow W S, Wyber R, Zavafer A, KellerB, Pogson B J, Robinson S A, Relative functional and optical absorptioncross-sections of PSII and other photosynthetic parameters monitored in situ,at a distance with a time resolution of a few seconds, using a prototype light induced fluorescence transient (LIFT) device. Functional Plant Biology, 2017, 44, 985-1006.
  • Wyber R, Malenovský Z, Ashcroft M B, Osmond B, Robinson S A. Do Daily and Seasonal Trends in Leaf Solar Induced FluorescenceReflect Changes in Photosynthesis, Growth or Light Exposure? Remote Sensing. 2017, 9, 604.
  • Pieruschka R, Albrecht H, Muller O, Berry J A,Klimov D, KolberZ S, Malenovsky Z, Rascher U, Daily and seasonal dynamics of remotely sensed photosynthetic efficiency in tree canopies. Tree Physiology, 2014, 34: 674-685.
  • Pieruschka R, Klimov D, Berry J A, Osmond B,Rascher U, KolberZ S, Remote Chlorophyll Fluorescence Measurements with the Laser-Induced Fluorescence Transient Approach. In Jennifer Normanly (Ed)High-Throughput Phenotyping in Plants: Methods and Protocols, Springer, 2012, pp 51-59.
  • Nichol C J, Pieruschka R, Takayama K, ForsterB, Kolber ZS, Rascher U, Grace J, Robinson S A, Pogson B, Osmond B, Canopy conundrums: building on the Biosphere 2 experience to scale measurements of innerand outer canopy photoprotection from the leaf to the landscape. Functional Plant Biology, 2012, 39: 1-24.
  • Pieruschka R, Klimov D, Kolber Z S, Berry J A,Monitoring of cold and light stress impact on photosynthesis by using the laser induced fluorescence transient (LIFT) approach. Functional Plant Biology, 2010, 37: 395-402.
  • Pieruschka R, Klimov D, Rascher U, Kolber Z S,Berry J A, Remote Monitoring of Photosynthetic Efficiency Using Laser Induced Fluorescence Transient (LIFT) Technique. In: Allen J.F., Gantt E., Golbeck J.H., Osmond B. (eds) Photosynthesis. Energy from the Sun. Springer, Dordrecht, 2008, pp 1539-1544.
  • Kolber ZS, Klimov D, Ananyev G, Rascher U, Berry J, Osmond B, Measuring photosynthetic parameters at a distance: laser induced fluorescence transient (LIFT) method for remote measurements of photosynthesis in terrestrial vegetation. Photosynthesis Research, 2005, 84: 121-129.
  • Ananyev G, Kolber Z S, Klimov D, FalkowskiP G, Berry J A, Rascher U, Martin R, Osmond B, Remote sensing of heterogeneity in photosynthetic efficiency, electron transport and dissipation of excesslight in Populus deltoides stands under ambient and elevated CO2 concentrations, and in a tropical forest canopy, using a new laser-induced fluorescence transient device. Global Change Biology, 2005, 11: 1195-1206.
  • Osmond B, Ananyev G, BerryJ, Langdon C, KolberZ S, Lin G, Monson R, Nichol C, Rascher U, Schurr U, Smith S, YakirD, Changing the way we think about global change research: scaling up in experimental ecosystem science. Global Change Biology, 2004, 10:393-407.

高通量植物光合表型测量仪LIFT可以集成到多种移动平台上,例如桁架、龙门吊、灌溉天车、拖拉机、田间无人车、田间推车等等。在慧诺瑞德(北京)科技有限公司的建议和推动下,Kolber博士已经为LIFT增加了GPS传感器,使得所有测量的光合表型数据都具有了GPS信息

Campus Kleinaltendorf Mai 2018