学术中心

全部分类
您现在的位置:
首页
/
/
国际植物表型学会系列webinar第10期

国际植物表型学会系列webinar第10期

  • 分类:首页学术活动
  • 作者:慧诺瑞德
  • 来源:植物表型圈
  • 发布时间:2020-10-21 13:48
  • 访问量:

【概要描述】

国际植物表型学会系列webinar第10期

【概要描述】

  • 分类:首页学术活动
  • 作者:慧诺瑞德
  • 来源:植物表型圈
  • 发布时间:2020-10-21 13:48
  • 访问量:
详情

题目:Special Session: Low-Cost Sensors and Vectors for Plant Phenotyping

报告人:Antoine FournierOlivier Pieters & Salma Samiei

时间:10月30日(周五)20:00-21:00

直播平台:百博智慧直播间植物表型频道

报告人介绍:

 

【点击进入直播间】

 

Antoine Fournier:

Towards Low-Cost Hyperspectral Single-Pixel Imaging for Plant Phenotyping

 

Olivier Pieters:

Gloxinia—An Open-Source Sensing Platform to Monitor the Dynamic Responses of Plants

 

Salma Samiei:

Toward Joint Acquisition-Annotation of Images with Egocentric Devices for a Lower-Cost Machine Learning Application to Apple Detection

 

直播内容:

Abstracts:

1)

Hyperspectral imaging techniques have been expanding considerably in recent years. The cost of current solutions is decreasing, but these high-end technologies are not yet available for moderate to low-cost outdoor and indoor applications. We have used some of the latest compressive sensing methods with a single-pixel imaging setup. Projected patterns were generated on Fourier basis, which is well-known for its properties and reduction of acquisition and calculation times. A low-cost, moderate-flow prototype was developed and studied in the laboratory, which has made it possible to obtain metrologically validated reflectance measurements using a minimal computational workload. these measurements, it was possible to discriminate plant species the rest of a scene and to identify biologically contrasted areas within a leaf. This prototype gives access to easy-to-use phenotyping and teaching tools at very low-cost.

 

2)

The study of the dynamic responses of plants to short-term environmental changes is becoming increasingly important in basic plant science, phenotyping, breeding, crop management, and modelling. These short-term variations are crucial in plant adaptation to new environments and, consequently, in plant fitness and productivity. Scalable, versatile, accurate, and low-cost data-logging solutions are necessary to advance these fields and complement existing sensing platforms such as high-throughput phenotyping. However, current data logging and sensing platforms do not meet the requirements to monitor these responses. Therefore, a new modular data logging platform was designed, named Gloxinia. Different sensor boards are interconnected depending upon the needs, with the potential to scale to hundreds of sensors in a distributed sensor system. To demonstrate the architecture, two sensor boards were designed—one for single-ended measurements and one for lock-in amplifier d measurements, named Sylvatica and Planalta, respectively. To evaluate the performance of the system in small setups, a small-scale trial was conducted in a growth chamber. Expected plant dynamics were successfully captured, indicating proper operation of the system. Though a large scale trial was not performed, we expect the system to scale very well to larger setups. Additionally, the platform is open-source, enabling other users to easily build upon our work and perform application-specific optimisations.

 

3)

Since most computer vision approaches are now driven by machine learning, the current bottleneck is the annotation of images. This time-consuming task is usually performed manually after the acquisition of images. In this article, we assess the value of various egocentric vision approaches in regard to performing joint acquisition and automatic image annotation rather than the conventional two-step process of acquisition followed by manual annotation. This approach is illustrated with apple detection in challenging field conditions. We demonstrate the possibility of high performance in automatic apple segmentation (Dice 0.85), apple counting (88 percent of probability of good detection, and 0.09 true-negative rate), and apple localization (a shift error of fewer than 3 pixels) with eye-tracking systems. This is obtained by simply applying the areas of interest captured by the egocentric devices to standard, non-supervised image segmentation. We especially stress the importance in terms of time of using such eye-tracking devices on head-mounted systems to jointly perform image acquisition and automatic annotation. A gain of time of over 10-fold by comparison with classical image acquisition followed by manual image annotation is demonstrated.

关键词:

扫二维码用手机看

推荐新闻

PhenoTrait “职”等你来
PhenoTrait “职”等你来
发布时间 : 2020-11-23 15:31:23
赶快将您的简历发到邮箱hr@phenotrait.com,我们热切的期待您的来信。!
查看详情
赶快将您的简历发到邮箱hr@phenotrait.com,我们热切的期待您的来信。!
慧诺表型实验室推出测试服务
慧诺表型实验室推出测试服务
发布时间 : 2020-08-26 11:38:26
提供植物表型、光合作用等相关的数据测试和分析服务
查看详情
提供植物表型、光合作用等相关的数据测试和分析服务
提高光合效率促进植物生长
提高光合效率促进植物生长
发布时间 : 2020-07-10 00:00:00
我们可能培育出阳光利用率至少为1.5%的植物,而不是目前的0.5%,这是一个巨大的进步。
查看详情
我们可能培育出阳光利用率至少为1.5%的植物,而不是目前的0.5%,这是一个巨大的进步。

视频展示

田间高通量表型平台
00:00:37
所属分类:
视频展示
发布时间:
2020/09/10
关键词:
表型
植物表型
田间表型
高通量表型

专题报道

联系我们

慧诺瑞德(北京)科技有限公司

地址:北京市海淀区西三旗街道建材城东路10号院
          京城尚德智造产业园E区112B

电话:010-62925490829288548292886482928874
传真:010-62925490-802
Email:
info@phenotrait.com

邮编:100096

在线留言

关注我们

这是描述信息

植物表型圈

这是描述信息

植物表型资讯

慧诺瑞德(北京)科技有限公司版权所有      京ICP备15043840号    网站建设:中企动力   北二分     法律声明