学术中心

全部分类
您现在的位置:
首页
/
/
/
一个新的监测水分胁迫的农业干旱指数

一个新的监测水分胁迫的农业干旱指数

  • 分类:植物表型资讯
  • 作者:PhenoTrait
  • 来源:本站
  • 发布时间:2020-11-06 06:10
  • 访问量:

【概要描述】

一个新的监测水分胁迫的农业干旱指数

【概要描述】

  • 分类:植物表型资讯
  • 作者:PhenoTrait
  • 来源:本站
  • 发布时间:2020-11-06 06:10
  • 访问量:
详情

干旱作为最具破坏性的自然灾害之一,严重影响农业生产、经济发展和人类生活。在未来该区气象干旱发生频率可能进一步增加的情况下,及时有效地监测农作物的干旱状况有助于水资源调配管理、干旱减缓以及粮食安全。

 

作物根区土壤水分是作物最直接的水分来源,而实际蒸散是水分消耗。土壤水分调节土壤-植被-大气连续体水分和能量通量的变化,而蒸散相较于植被指数能更迅速地响应水分胁迫。二者的结合可提高华北平原冬小麦干旱的监测能力。二者如何结合,利用遥感和气象观测建立更有效的农业干旱指数呢?

 

1. 研究区域概况

 

华北平原近87%的土地为耕地。冬小麦是华北平原的主粮之一,大约贡献了全国小麦产量的50%(图1)。尽管21世纪以来社会的干旱管理和抗灾能力显著提高,但华北主要省份(河南、河北和山东)每年仍有至少200万公顷的耕地受到干旱的袭扰(图2)。

 

图1 研究区域(2000-2011年县级冬小麦年平均产量,耕地分布的空间分辨率为0.1°)

 

图2 1998-2007年华北平原主要省份(河南、河北和山东)干旱面积及其占全部自然灾害的比例

 

2. 农业干旱指数的建立及数据来源

 

农田生态系统的主要水文变量包括土壤水分、降水(灌溉)、径流、渗漏以及蒸散。相较于降水或灌溉,根区土壤水分是作物最直接的水分来源。同时,实际蒸散是直接水分消耗的指标。为了更准确地描述作物水分的供需,进而反映作物水分胁迫状况,根区有效土壤水分(根区土壤水分与凋萎湿度的差,并转换为水深)和作物需水量(实际蒸散量与土壤水分胁迫系数的比)被作为两个重要的干旱指标(图3)。

 

具体农业干旱指数的建立过程:1)干旱指数构建方案包括两种,一是类似于SPEI(standardized precipitation and evapotranspiration index),计算某一时段内有效土壤水分与作物需水量的差,并将其作为单一事件处理;二是将两个干旱指标直接看作双事件处理;2)采用非参数Gringorten方法计算各方案中事件的历史发生概率;3)通过正态化处理将各方案中事件的发生概率转换为干旱强度,即得到标准农业干旱指数,分别称为USMEI(univariate soil moisture and evapotranspiration index)和BSMEI(bivariate soil moisture and evapotranspiration index)。

 

图3 农田生态系统主要水文变量的概念示意图

 

农业干旱指数的建立及评价过程中涉及多种数据产品:1)土壤水分产品(2001-2018年European Centre for Medium-Range Weather Forecasts提供的空间分辨率0.1°时间分辨率6小时共4层的土壤水分产品);2)土壤数据库(中山大学地气相互作用研究组共享的空间分辨率为30 s共8层的土壤水文参数和物理属性产品);3)实际蒸散产品(2001-2018年MODIS提供的空间分辨率500 m时间分辨率8天的MOD16A2产品);4)地表覆被(2001-2017年MODIS提供的空间分辨率500 m的MCD12Q1产品);5)降水(1965-2018年国家气象信息中心提供的373个站点的逐日历史观测数据);6)灾情数据(2005-2017中国气象灾害年鉴和2001-2013年61个农业气象站的逐旬灾情记录);7)冬小麦产量(2002-2011年265个县的单产和2002-2013年61个农业气象站的试验单产)。

 

3. 农业干旱指数评估

 

新建农业干旱指数的评估包括三方面。首先,针对具体历史干旱事件,比较新建干旱指数与当前常用农业干旱指数在区域上的干旱监测效果;其次,根据农业气象站的逐旬灾情记录,分析各农业干旱指数的监测成功率;最后,在区域和站点尺度上分析各农业干旱指数与冬小麦气象产量之间的相关关系。

 

2008年12月至2009年1月,灾害年鉴指出包括北京、天津、河南、山东和安徽在内的北方冬麦区遭受中重度气象干旱的影响,且气象干旱指数PA(precipitation anomaly in percentage)能够及时监测这一现象。但各农业干旱指数反映的干旱信息并不同于PA。总体而言,USMEI与SMAPI(soil moisture anomaly percentage index)监测的干旱情况十分相似,而BSMEI在每个时期的干旱强度均比USMEI严重。相关分析表明,相较于BSMEI,USMEI与SMAPI的一致性更好。此外USMEI、BSMEI与ESI(evaporative stress index)的相关性均较差(图4)。

 

图4 2008-2009年华北平原冬小麦生长季内不同干旱指数(PA,ESI,SMAPI,USMEI和BSMEI)的监测能力对比(第一行为PA对气象干旱的监测情况,剩余四行分别ESI,SMAPI,USMEI和BSMEI每8天一次的监测情况。R1为USMEI(BSMEI)和ESI的相关系数,R2为USMEI(BSMEI)和SMAPI的相关系数

 

在农业气象站干旱发生的情况下,BSMEI在不同月份的农业干旱监测准确性均高于80%(2月除外),ESI的监测准确性次之,而SMAPI的表现最差。在农业气象站未发生干旱的情况下,不同时段的最佳农业干旱指数不同,但BSMEI可能高估了干旱强度。综合考虑农业气象站干旱发生和未发生两种条件下各农业干旱指数的监测准确性,USMEI能够反映冬小麦10月至1月的干旱信息,SMAPI在3月至6月的干监测能力较高,而ESI在2月的监测准确性较高 (图5)。

 

图5 站点尺度各农业干旱指数在干旱、非干旱和综合条件下的监测准确性

 

区域尺度上,BSMEI与县级气象产量的相关性最差,而USMEI与气象产量相关性略高于SMAPI且基本与ESI的表现相似。此外,部分县域USMEI与气象产量的相关性接近0.9(图6)。站点尺度上,四种农业干旱指数与气象产量的相关性均较差,甚至接近一半的站点出现负相关。这可能由于除了干旱外气象产量还受到其它灾害的影响(图6)。通过对仅受干旱影响的站点进行提取,进一步的相关分析表明USMEI与气象产量的相关性仍高于SMAPI,且相关系数的分布相对于ESI更为集中。但由于无法消除尺度效应,干旱指数与气象产量的相关系数在部分站点仍为负值(图7)。

 

图6 县级和站点尺度上各农业干旱指数与冬小麦气象产量的相关性(箱线图中,点和线分别代表样本均值和分位数,×表示样本最大值和最小值,N表示样本量。不同尺度上相关性的对比是针对相同县域或站点)

 

图7 仅干旱发生情况下站点尺度各农业干旱指数与冬小麦气象产量的相关性(箱线图中,点和线分别代表样本均值和分位数,×表示样本最大值和最小值,N表示样本量。相关性的对比是针对相同站点)

 

4. 结论

 

本研究将作物根区土壤水分与实际蒸散相结合,构建了农业干旱指数USMEI和BSMEI。通过对华北平原冬小麦水分胁迫的监测进行分析和比较,结果表明USMEI能有效监测农业干旱,尤其是冬春干旱(10月-1月);相较于ESI和SMAPI,区域和站点尺度上USMEI与冬小麦气象产量的相关性结果是可接受的;ESI和SMAPI分别在2月和3-6月对冬小麦的监测能力较好;而BSMEI由于其高估了干旱强度,从而不适用于该地区冬小麦的干旱监测。

 

作者介绍:

作者团队以中国气象科学院房世波团队为主,是该团队与英国新堡大学李振洪团队合作的中英牛顿基金项目的研究成果之一。房世波团队现为中国气象局遥感与气候信息开放实验室的核心团队,主要从事卫星遥感和气象灾害监测研究,该团队主持和完成国家科技国际合作专项和国家自然科学基金国际合作项目、面上项目等国家项目多项,参与国家重点研发项目多项。该团队已发表研究论文近百篇,其中SCI(E)论文40余篇;撰写专著多本,遥感软件著作权多个。团队多篇论文入选“中国精品科技期刊顶尖学术论文领跑者5000”,一篇论文获得国际科学理事会空间研究委员会2020届, “青年科学家杰出论文奖”。 研究成果获得中国测绘科学技术二等奖和加拿大政府研究专项奖等奖项。

 

来源:

Wu, D., Li, Z., Zhu, Y., Li, X., Wu, Y., Fang, S., 2021. A new agricultural drought index for monitoring the water stress of winter wheat. Agric. Water Manag. 244, 106599. https://doi.org/10.1016/j.agwat.2020.106599.

关键词:

扫二维码用手机看

推荐新闻

PhenoTrait “职”等你来
PhenoTrait “职”等你来
发布时间 : 2020-11-23 15:31:23
赶快将您的简历发到邮箱hr@phenotrait.com,我们热切的期待您的来信。!
查看详情
赶快将您的简历发到邮箱hr@phenotrait.com,我们热切的期待您的来信。!
慧诺表型实验室推出测试服务
慧诺表型实验室推出测试服务
发布时间 : 2020-08-26 11:38:26
提供植物表型、光合作用等相关的数据测试和分析服务
查看详情
提供植物表型、光合作用等相关的数据测试和分析服务
提高光合效率促进植物生长
提高光合效率促进植物生长
发布时间 : 2020-07-10 00:00:00
我们可能培育出阳光利用率至少为1.5%的植物,而不是目前的0.5%,这是一个巨大的进步。
查看详情
我们可能培育出阳光利用率至少为1.5%的植物,而不是目前的0.5%,这是一个巨大的进步。

视频展示

田间高通量表型平台
00:00:37
所属分类:
视频展示
发布时间:
2020/09/10
关键词:
表型
植物表型
田间表型
高通量表型

专题报道

联系我们

慧诺瑞德(北京)科技有限公司

地址:北京市海淀区西三旗街道建材城东路10号院
          京城尚德智造产业园E区112B

电话:010-62925490829288548292886482928874
传真:010-62925490-802
Email:
info@phenotrait.com

邮编:100096

在线留言

关注我们

这是描述信息

植物表型圈

这是描述信息

植物表型资讯

慧诺瑞德(北京)科技有限公司版权所有      京ICP备15043840号    网站建设:中企动力   北二分     法律声明