应用案例

资讯分类
您现在的位置:
首页
/
/
无人机在美国农业中的12个潜在应用

无人机在美国农业中的12个潜在应用

  • 分类:应用案例
  • 作者:
  • 来源:
  • 发布时间:2020-08-23 14:39
  • 访问量:

【概要描述】随着精准农业的快速发展,在农业无人机的需求越来越大。国际上也公认精准农业将是无人机发展的一块主要市场之一。  虽然农场主和农业公司对于无人机技术均抱有很高的期待,但就目前而言,并没有足够据能证明一切都朝着无人机农业化应用这个方向发展。  “无人机农业化应用发展最大的绊脚石是之一,是缺乏证据证明无人机系统对于农作物和畜牧管理的有效性和适用性。为此,北达科他州立大学的卡林顿研究推广中心(CREC)于2

无人机在美国农业中的12个潜在应用

【概要描述】随着精准农业的快速发展,在农业无人机的需求越来越大。国际上也公认精准农业将是无人机发展的一块主要市场之一。  虽然农场主和农业公司对于无人机技术均抱有很高的期待,但就目前而言,并没有足够据能证明一切都朝着无人机农业化应用这个方向发展。  “无人机农业化应用发展最大的绊脚石是之一,是缺乏证据证明无人机系统对于农作物和畜牧管理的有效性和适用性。为此,北达科他州立大学的卡林顿研究推广中心(CREC)于2

  • 分类:应用案例
  • 作者:
  • 来源:
  • 发布时间:2020-08-23 14:39
  • 访问量:
详情

随着精准农业的快速发展,在农业无人机的需求越来越大。国际上也公认精准农业将是无人机发展的一块主要市场之一。

 

虽然农场主和农业公司对于无人机技术均抱有很高的期待,但就目前而言,并没有足够据能证明一切都朝着无人机农业化应用这个方向发展。

 

“无人机农业化应用发展最大的绊脚石是之一,是缺乏证据证明无人机系统对于农作物和畜牧管理的有效性和适用性。为此,北达科他州立大学的卡林顿研究推广中心(CREC)于2014年启动了一个项目,该项目致力于评估无人机在农作物和家畜管理上的实用性和有效性。” 北达科他州立大学农业机器系统专家John Nowatzki说,“目前,北达科他州有很多制造商、咨询公司、小型精准农业公司对于无人机系统很感兴趣,我们将为这些公司提供必要的信息和测试工具,帮助他们把无人机成功地运用于农业。同时,我们也将进一步研究在美国农业怎样应用无人机技术。”

 

CREC还计划开发用于无人机行业的决策支持系统,将无人机的应用进一步细化。以下是农业无人机应用研究的十二个初步调查结果。

 

1 植物出苗识别和植物计数

在玉米、大豆和向日葵播种6天和12天后,研究人员在种植区多个样方点记录植物出苗时间和出苗计数。同一时间,用无人机进行多光谱图像数据采集。对采集的多光谱图像数据进行校准分析,将植物与周围环境进行了有效区分,并以1平方米为单位进行计算,得到植物密度分布图。

 

研究进展:采用多旋翼无人机,配置索尼相机传感器,1000万像素的多光谱图像,以多个作物种植小区测定数据进行对比分析,用MATLAB进行计数。CREC专家Mike Ostlie表示,通过对比地面实测计数的数据和无人机测量的农作物种群数量,两者之间数据具有非常好的相关性和一致性,即使在农作物植株非常小(幼苗时期)时也不例外。此外,通过对比分析无人机和地面实测数据,无人机系统采集的植被归一化指数NDVI被成功地运用于大豆成熟期预测。

 

2 监测玉米和小麦的营养情况

研究人员在作物生长的V-5和V-8两个阶段,利用无人机搭载的光学传感器获得NDVI指数,并进行多点数据采集。同时用无人机进行红外图像数据采集,对植物缺氮状况校正分析。

 

研究进展:将无人机采集图像分析得到的NDVI数据与实测数据进行对比,建立NDVI与氮含量曲线关系,用于预测植物氮含量的季节变化。研究人员还收集了小麦花期的NDVI数据,与无人机测量的数据进行对比。研究人员对比分析了光谱仪测定小麦氮含量和无人机采集分析数据,尽管两个仪器测试数据值不一样,但是在不同的实验处理上,两种方法检测的植物氮缺乏数据精度相似,结果和趋势也是相似的。

 

img

 

3 植物健康早期评估

在春小麦、大豆、玉米试验小区,CREC研究人员使用无人机对植物生长初期状况进行连续监测,对植物营养水平、植物活力、产量等进行了评估。

 

研究进展:无人机采集多光谱图像的同时间段,研究人员在地面进行了相同参数的测量采集。“从实验结果来看,光谱仪传感器和无人机航空图像均可以对未成熟的春小麦进行产量预测分析,两者的数据具有较好的一致性,”Ostlie说。

 

4 植物病害症状监测

通过无人机拍摄的试验区图片,可以监测植物病害发生的区域和严重程度,同时数据可以集成到农场数据管理系统中,帮助农场主和农民更好的进行作物管理。CREC的研究人员正在试验区域内进行植物病害程度检测,初步计划将进行大豆试验区内的菌核病(白粉病)调查,下一步计划开展叶斑病、斑枯病和春小麦锈条病的调查,并将结果进行量化对比分析。

 

项目进展:目前正在进行大豆、谷类植物试验区无人机图像采集,下一步计划对无人机图像进行分析校正。

 

5 植物虫害症状监测

由于种植面积比较大,农场主和种植者无法对区域内所有作物进行虫害监测。无人机的使用可以帮助农场主和种植者对作物虫害进行监测,通过定期采集图像进行分析,可以确定植物虫害发生位置和严重程度,并根据监测结果判断是否需要进行喷洒农药及喷洒时间。

 

项目进展:作物虫害的受损情况鉴定正在进行中。

  

6 监测杂草爆发

杂草的出现会影响作物生长及产量,农场主和种植者需要对作物种植区的杂草出现情况进行监测。使用无人机定期采集种植区图像数据,可以帮助农场主和种植者确定杂草的种类和发生位置,根据结果进行判断使用除草剂的类型和时间。

 

项目进展:“手持式光谱仪无法帮助农场主和种植者提供杂草种类信息,无人机的初始扫描图像也无法明确杂草种类,”Ostlie在实验记录上写到,“然而,通过无人机拍摄的图像,可以确定杂草发生的特定区域。在本研究中,我们发现小麦和杂草在视觉图像上具有一定差异性,如加拿大蓟和常见的乳草属植物,通过图像校正分析,可以将小麦作物和杂草进行区分,确认杂草发生位置和程度,进行除草剂的喷施作业控制杂草生长。”

扫二维码用手机看

下一个:
下一个:

相关产品

暂时没有内容信息显示
请先在网站后台添加数据记录。

推荐新闻

PhenoTrait “职”等你来
PhenoTrait “职”等你来
发布时间 : 2020-11-23 15:31:23
赶快将您的简历发到邮箱hr@phenotrait.com,我们热切的期待您的来信。!
查看详情
赶快将您的简历发到邮箱hr@phenotrait.com,我们热切的期待您的来信。!
慧诺表型实验室推出测试服务
慧诺表型实验室推出测试服务
发布时间 : 2020-08-26 11:38:26
提供植物表型、光合作用等相关的数据测试和分析服务
查看详情
提供植物表型、光合作用等相关的数据测试和分析服务
提高光合效率促进植物生长
提高光合效率促进植物生长
发布时间 : 2020-07-10 00:00:00
我们可能培育出阳光利用率至少为1.5%的植物,而不是目前的0.5%,这是一个巨大的进步。
查看详情
我们可能培育出阳光利用率至少为1.5%的植物,而不是目前的0.5%,这是一个巨大的进步。

视频展示

田间高通量表型平台
00:00:37
所属分类:
视频展示
发布时间:
2020/09/10
关键词:
表型
植物表型
田间表型
高通量表型

专题报道

联系我们

慧诺瑞德(北京)科技有限公司

地址:北京市海淀区西三旗街道建材城东路10号院
          京城尚德智造产业园E区112B

电话:010-62925490829288548292886482928874
传真:010-62925490-802
Email:
info@phenotrait.com

邮编:100096

在线留言

关注我们

这是描述信息

植物表型圈

这是描述信息

植物表型资讯

慧诺瑞德(北京)科技有限公司版权所有      京ICP备15043840号    网站建设:中企动力   北二分     法律声明