学术中心

全部分类
您现在的位置:
首页
/
/
/
综述:利用深度学习模型对作物产量进行估算

综述:利用深度学习模型对作物产量进行估算

  • 分类:植物表型资讯
  • 作者:PhenoTrait
  • 来源:本站
  • 发布时间:2021-05-01 06:10
  • 访问量:

【概要描述】在这篇综述中,人们观察到深度学习技术的应用为智能农业提供了更好的准确性。

综述:利用深度学习模型对作物产量进行估算

【概要描述】在这篇综述中,人们观察到深度学习技术的应用为智能农业提供了更好的准确性。

  • 分类:植物表型资讯
  • 作者:PhenoTrait
  • 来源:本站
  • 发布时间:2021-05-01 06:10
  • 访问量:
详情

精准农业是在多样化环境中利用自然矿物质获得更高产量的重要途径。根据气候、土壤参数和所用肥料的不同,作物的产量可能每年都不同。在新冠疫情后,农业工业的自动化缓和了资源使用,提高了食品质量。农业机器人已应用于作物播种、监测、杂草控制、害虫管理和收获等农业领域。对不同生长阶段的花、果进行人工估产,劳动密集,花费高。遥感技术为作物产量预测提供了准确可靠的依据。利用计算机视觉和深度学习模型进行自动化图像分析可以提供更精确的产量估算。

 

文献检索工作综述

 

在这篇综述中,人们观察到深度学习技术的应用为智能农业提供了更好的准确性。本文以葡萄、苹果、柑橘、西红柿等水果以及甘蔗、玉米、大豆、黄瓜、玉米、小麦等蔬菜为材料进行了试验。本文所做的研究工作可为机器人收割、杂草检测和害虫管理等应用提供一定的参考。采用传统深度学习技术的方法平均准确率为92.51%。本文阐述了利用虚拟分析和分类器实现作物产量自动检测的各种方法。另外,本文还指出深度学习技术中的技术障碍已经有了进展,但仍有局限性,同时,对深度学习技术的未来研究进行了展望。

 

番茄物候期:(a)开花期;(b)未成熟期;(c)成熟期

 

来源:

Darwin B, Dharmaraj P, Prince S, et al. Recognition of Bloom/Yield in Crop Images Using Deep Learning Models for Smart Agriculture: A Review. Agronomy 2021, 11(4), 646; https://doi.org/10.3390/agronomy11040646.

关键词:

扫二维码用手机看

推荐新闻

致即将毕业的你
致即将毕业的你
发布时间 : 2021-04-20 15:29:43
如果您有意向,不要彷徨不要犹豫,赶快将您的简历发到邮箱hr@phenotrait.com吧。
查看详情
如果您有意向,不要彷徨不要犹豫,赶快将您的简历发到邮箱hr@phenotrait.com吧。
我司荣登2020国际未来农业食品百强榜生物农业TOP20
我司荣登2020国际未来农业食品百强榜生物农业TOP20
慧诺瑞德荣登2020国际未来农业食品百强榜生物农业TOP20
查看详情
慧诺瑞德荣登2020国际未来农业食品百强榜生物农业TOP20
慧诺表型实验室推出测试服务
慧诺表型实验室推出测试服务
发布时间 : 2020-08-26 11:38:26
提供植物表型、光合作用等相关的数据测试和分析服务
查看详情
提供植物表型、光合作用等相关的数据测试和分析服务
提高光合效率促进植物生长
提高光合效率促进植物生长
发布时间 : 2020-07-10 00:00:00
我们可能培育出阳光利用率至少为1.5%的植物,而不是目前的0.5%,这是一个巨大的进步。
查看详情
我们可能培育出阳光利用率至少为1.5%的植物,而不是目前的0.5%,这是一个巨大的进步。

视频展示

植物表型架起从数字农业到智慧农业的桥梁
00:30:11
所属分类:
视频展示
发布时间:
2020/12/10
关键词:

专题报道

搜索
确认
取消

联系我们

慧诺瑞德(北京)科技有限公司

地址:北京市海淀区西三旗街道建材城东路10号院
          京城尚德智造产业园E区112B

电话:010-62925490829288548292886482928874
传真:010-62925490-802
Email:
info@phenotrait.com

邮编:100096

在线留言

关注我们

这是描述信息

植物表型圈

这是描述信息

植物表型资讯

慧诺瑞德(北京)科技有限公司版权所有      京ICP备15043840号    网站建设:中企动力   北二分     法律声明