产品与方案

全部分类
您现在的位置:
首页
/
/
/
多功能植物光合表型测量系统
1/1
浏览量:
1000

多功能植物光合表型测量系统

零售价
0.0
市场价
0.0
浏览量:
1000
产品编号
数量
-
+
库存:
0
1
产品描述

 

多功能植物光合表型测量系统PlantExplorer采用创新的多光谱叶绿素荧光/可见光成像技术,利用最新的LED技术、CCD技术、通信技术,实现了对植物表型的创新测量,可以在获取RGB成像、叶绿素成像、花青素成像的同时,获取叶绿素荧光成像(成像面积40cm x 53cm)。系统包括带光学滤光轮的CCD成像系统、聚焦系统、嵌入式高亮度红光LED、光谱白光LED、多光谱LED、嵌入式电脑和触摸屏。由于采用一个CCD加滤光轮的组合,使得能够在像素水平上进行图像叠加计算。

 

多功能植物光合表型测量系统PlantExplorer包括三个版本:标准版PlantExplorer、高级版本PlantExplorerPro和适合高达120cm植物的版本PlantExplorerPro+。三个版本都可以选配GFP和/或RFP成像模块(需在购买时指出,不可后续升级),其中PlantExplorer可以在购买后,再后续升级成PlantExplorerPro

 

 

功能特性

  • 创新的多功能植物光合表型平台
  • 可见光成像+多光谱成像+叶绿素荧光(调制和非调制)成像
  • 同一个相机采集所有成像
  • 全自动马达聚焦系统,带全景和微距聚焦程序
  • 出色的高清相机(1.3 M pixel)测量叶绿素荧光
  • 高信噪比叶绿素荧光成像
  • 高质量10 Mp镜头,带光谱可见光和近红外涂层
  • 无可见镜头畸变,无需图像校正
  • 滤光片可提供10个滤光片位置
  • 大景深设计
  • 成像范围29cm x 39cm或40 x 53cm
  • 可进行多光谱测量,精确获知叶绿素荧光、叶绿素、花青素和R/G/B图像每个像素的变化
  • 自动计算荧光参数和表型参数
  • 可设置进行延时成像测量
  • 嵌入式电脑进行精确的成像、时间控制、光强控制和数据存储
  • 系统配置触摸屏显示器
  • 功能强大的控制和分析软件

 

选购指南

 

  

主要技术参数

  • 相机传感器类型:CCD
  • 相机分辨率:130万像素
  • 图像获取时间:单张叶绿素荧光图像20-1 000 us
  • 图像格式:16位RAW格式
  • 光谱范围:350~1000 nm
  • 激发光强度:25cm处,1500-6000 umol m-2 s-1;60cm处,800-3500 umol m-2 s-1。强度可调。
  • 光化光强度: 60cm处,100-600 umol m-2 s-1。强度可调。
  • 光学滤光片(适用于多光谱版):6种高质量光学干涉滤光片,包括荧光、红光、绿光、蓝光、花青素和近红外滤光片
  • 成像面积:40 x 53 cm
  • 成像和计算的参数:Fo成像、Fm成像、Ft成像、Ft=5min成像、Fm’成像、Fv/Fm成像、Fq’成像、ΦPSII成像、ΦRO成像、NPQ100成像、qN成像、qP成像、Rfd100成像、 NDVI成像、RNIR成像、RChl成像.、RAnth成像、RRed成像、RGreen成像、RBlue成像、叶绿素指数成像、花青素指数成像和可见光成像,能够自动计算投影叶面积、Fv/Fm平均值、低于Fv/Fm的面积百分比、ΦPSII平均值、低于ΦPSII的面积百分比、NPQ100平均值、高于NPQ100的面积百分比、Rfd100平均值、低于Rfd100的面积百分比、平均RGB比值、特殊RGB比值的面积百分比、平均叶绿素指数、低于叶绿素指数的面积百分比、平均花青素指数、低于花青素指数的面积百分比等(具体参数取决于版本),以及凸包、最小外接圆、最小外接矩形等相关表型参数。

 

应用举例

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

利用PhenoVation荧光成像技术发表的部分文献

  • Jin X, Zarco-Tejada P, Schmidhalter U, Reynolds M P et al. (2020) High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms. IEEE Geoscience and Remote Sensing Magazine, DOI: 10.1109/MGRS.2020.2998816
  • Pennisi G, Blasioli S, Cellini A, Maia L, Crepaldi A, Braschi I, Gianquinto G. (2019). Unraveling the Role of Red:Blue LED Lights on Resource Use Efficiency and Nutritional Properties of Indoor Grown Sweet Basil. Frontiers in plant science, 10, 305. doi:10.3389/fpls.2019.00305
  • Pennisi G, Orsini F, Blasioli S, Cellini A et al. (2019) Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red:blue ratio provided by LED lighting. Scientific Reports, 9, 14127
  • Meng L, Mestdagh H, Ameye M, et al. (2021) Phenotypic variation of Botrytis cinerea Isolates is influenced by spectral light quality. Frontiers in Plant Science, 11:1233. doi: 10.3389/fpls.2020.01233
  • De Zutter N, Ameye M, Debode J, et al. (2021) Shifts in the rhizobiome during consecutive in planta enrichment for phosphate-solubilizing bacteria differentially affect maize P status. Microbial Biotechnology, doi:10.1111/1751-7915.13824
  • Stambuk P, Sikuten I, Preiner D, et al. (2021) Screening of Croatian Native Grapevine Varieties for Susceptibility to Plasmopara viticola Using Leaf Disc Bioassay, Chlorophyll Fluorescence, and Multispectral Imaging. Plants, 10, 661. https://doi.org/10.3390/plants10040661
  • Wang L, Liu F, Hao X, et al. (2021) Identification of the QTL-allele System Underlying Two High-Throughput Physiological Traits in the Chinese Soybean Germplasm Population. Frontiers in Genetics, https://doi.org/10.3389/fgene.2021.600444
  • Tan J, de Zutter N, de Saeger S, et al. (2021) Presence of the Weakly Pathogenic Fusarium poae in the Fusarium Head Blight Disease Complex Hampers Biocontrol and Chemical Control of the Virulent Fusarium graminearum Pathogen. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2021.641890
  • Bhatnagar N, Pandey S. (2020) Heterotrimeric G-Protein Interactions Are Conserved Despite Regulatory Element Loss in Some Plants. Plant Physiology, DOI: https://doi.org/10.1104/pp.20.01309
  • Venneman J, Vandermeersch L, Walgraeve C et al. (2020) Respiratory CO2 Combined With a Blend of Volatiles Emitted by Endophytic Serendipita Strains Strongly Stimulate Growth of Arabidopsis Implicating Auxin and Cytokinin Signaling. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2020.544435
  • Tan J, Ameye M, Landschoot S et al. (2020) At the scene of the crime: New insights into the role of weakly pathogenic members of the fusarium head blight disease complex. Molecular Plant Pathology, DOI: 10.1111/mpp.12996
  • 12.    Velivelli S L S, Czymmek K J, Li H, Shaw J B, Buchko G W, Shah D M. (2020) Antifungal symbiotic peptide NCR044 exhibits unique structure and multifaceted mechanisms of action that confer plant protection. PNAS, DOI: 10.1073/pnas.2003526117
  • 13.    Li H, Velivelli S L S, Shah D M. (2019) Antifungal Potency and Modes of Action of a Novel Olive Tree Defensin Against Closely Related Ascomycete Fungal Pathogens. Molecular Plant-Microbe Interactions. 32(12): 1646-1664.
  • 14.    Mancarella S, Orsini F, van Oosten M J, SAnoubar R, Stanghellini C, Kondo S, Gianquinto G, Maggio A. (2016) Leaf sodium accumulation facilitates salt stress adaptation and preserves photosystem functionality in salt stressed Ocimum basilicum. Environmental and Experimental Botany, 130: 162-173.
  • 15.    Virlet N, Sabermanesh K, Sadeghi-Tehran P, Hawkesford M J. (2016) Field Scanalyzer: An automated robotic field phenotyping platform for detailed crop monitoring. Functional Plant Biology, 44(1): 143-153.
  • 16.    Gorbe Sanchez E, Heuvelink E, de Gelder A, Stanghellini C. (2015) New Non-invasive Tools for Early Plant Stress Detection. Procedia Environmental Sciences, 29: 249-250. 
  • Flood P, Theeuwen T, Schneeberger K, Keizer P, Kruijer W, et al. (2020) Reciprocal cybrids reveal how organellar genomes affect plant phenotypes. Nature Plants, 10.1038/s41477-019-0575-9ff. ffhal-02392124v2f
  • Prinzenberg A E, Campos-Dominguez L, Kruijer W, Harbinson J, Aarts M G M. (2020) Natural variation of photosynthetic efficiency in Arabidopsis thaliana accessions under low temperature conditions. Plant Cell & Environment, 1–14. https://doi.org/10.1111/pce.13811
  • Zhang H, Chen Y, Niu Y, Zhang X, Zhao J, Sun L, Wang H, Xiao J, Wang X. (2020) Characterization and fine mapping of a leaf yellowing mutant in common wheat. Plant Growth Regulation, https://doi.org/10.1007/s10725-020-00633-0
  • Van Es S W, van der Auweraert E B, Silveira S R, Angenent G C, van Dijk A D J, Immink R G H. (2019) Comprehensive phenotyping reveals interactions and functions of Arabidopsis thaliana TCP genes in yield determination. The Plant Journal, doi: 10.1111/tpj.14326 
  • Prinzenberg A E, Viquez-Zamora M, Harbinson J, Lindhout P, van Heusden S. (2018) Chlorophyll fluorescence imaging reveals genetic variationand loci for a photosynthetic trait in diploid potato. Physiologia Plantarum, 164: 163-175.
  • Van Rooijen R, Harbinson J, Aarts M G M. (2018) Photosynthetic response to increased irradiance correlates to variation in transcriptional response of lipid‐remodeling and heat‐shock genes. Plant Direct, 2(7): e00069
  • Van Bezouw R F H M, Keurentjes J J B, Harbinson J, Aarts M G. (2018) Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency. Plant Journal, 97(1): 112-133.
  • Bazakos C, Hanemian M, Trontin C, Jimenez-Gomez J M, Loudet O. (2017) New Strategies and Tools in Quantitative Genetics: How to Go from the Phenotype to the Genotype. Annual Review of Plant Biology, 68:435-455 
  • Van Rooijen R, Kruijer W, Boesten R, van Eeuwijk F A, Harbinson J, Aarts M G M. (2017) Natural variation of YELLOW SEEDLING1 affects photosynthetic acclimation of Arabidopsis thaliana. Nature Communications, 8: 1421
  • Flood P J, Kruijer W, Schnabel S K, van der Schoor R, Jalink H, Snel J F H, Harbinson J, Aarts M G M. (2016) Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. Plant Methods, 12: 14. https://doi.org/10.1186/s13007-016-0113-y
  • Harbinson J, Prinzenberg A E, Kruijer W, Aarts M G M. (2012) High throughput screening with chlorophyll fluorescence imaging and its use in crop improvement. Current Opinion in Biotechnology, 23:221
  • Köhl J, Goossen-van de Geijn H, Groenenboom-de Haas L, et al. (2019) Stepwise screening of candidate antagonists for biological control of Blumeria graminis f. sp. tritici. Biological Control, 136: 104008
  • Mohd Nadzir M M, Vieira Lelis F M, Thapa B, Ali A, Visser R G F, van Heusden A W, van der Wolf J M. (2019) Development of an in vitro protocol to screen Clavibacter michiganensis subsp. michiganensis pathogenicity in different Solanum species. Plant Phathology, 68(1): 42-48
  • Sall K, Dekkers B J W, Nonogaki M, Katsuragawa Y, Koyari R, Hendrix D, Willems L A J, Bentsink L, Nonogaki H. (2019) DELAY OF GERMINATION  1‐LIKE  4 acts as an inducer of seed reserve accumulation. The Plant Journal, 100: 7-19.
  • Domazakis E, Wouters D, Visser R G F, Kamoun S, Joosten M H A J, Vleeshouwers V G A A. (2018) The ELR-SOBIR1 Complex Functions as a Two-Component Receptor-Like Kinase to Mount Defense Against Phytophthora infestans. Molecular Plant-Microbe Interactions, 31(8): 795-802.
  • Kastelein P, Krijger M, Czajkowski R, van der Zouwen P S, van der Schoor R, Jalink H, van der Wolf J M. (2014) Development of Xanthomonas fragariae populations and disease progression in strawberry plants after spray‐inoculation of leaves. Plant Pathology, 63(2): 255-263.
关键词:
叶绿素荧光成像
叶绿素荧光
光合表型
光合作用
植物表型
作物表型
PlantExplorer
PhenoVation
PhenoTrait
慧诺瑞德
表型组学
扫二维码用手机看
未找到相应参数组,请于后台属性模板中添加

案例与文献

推荐新闻

致即将毕业的你
致即将毕业的你
发布时间 : 2021-04-20 15:29:43
如果您有意向,不要彷徨不要犹豫,赶快将您的简历发到邮箱hr@phenotrait.com吧。
查看详情
如果您有意向,不要彷徨不要犹豫,赶快将您的简历发到邮箱hr@phenotrait.com吧。
我司荣登2020国际未来农业食品百强榜生物农业TOP20
我司荣登2020国际未来农业食品百强榜生物农业TOP20
慧诺瑞德荣登2020国际未来农业食品百强榜生物农业TOP20
查看详情
慧诺瑞德荣登2020国际未来农业食品百强榜生物农业TOP20
慧诺表型实验室推出测试服务
慧诺表型实验室推出测试服务
发布时间 : 2020-08-26 11:38:26
提供植物表型、光合作用等相关的数据测试和分析服务
查看详情
提供植物表型、光合作用等相关的数据测试和分析服务
提高光合效率促进植物生长
提高光合效率促进植物生长
发布时间 : 2020-07-10 00:00:00
我们可能培育出阳光利用率至少为1.5%的植物,而不是目前的0.5%,这是一个巨大的进步。
查看详情
我们可能培育出阳光利用率至少为1.5%的植物,而不是目前的0.5%,这是一个巨大的进步。

视频展示

植物表型架起从数字农业到智慧农业的桥梁
00:30:11
所属分类:
视频展示
发布时间:
2020/12/10
关键词:

专题报道

搜索
确认
取消

联系我们

慧诺瑞德(北京)科技有限公司

地址:北京市海淀区西三旗街道建材城东路10号院
          京城尚德智造产业园E区112B

电话:010-62925490829288548292886482928874
传真:010-62925490-802
Email:
info@phenotrait.com

邮编:100096

在线留言

关注我们

这是描述信息

植物表型圈

这是描述信息

植物表型资讯

慧诺瑞德(北京)科技有限公司版权所有      京ICP备15043840号    网站建设:中企动力   北二分     法律声明