学术中心
几个世纪以来,生物学家一直使用图画、绘画和照片等图像来记录和量化生命的形状和模式。随着数字成像技术的出现,生物学家继续以更快的速度收集图像数据。庞大的数据可以提供对一系列生物现象的深入了解,包括表型特征多样性、种群动态、分化和适应机制以及进化变化。但是,图像数据采集的速度已经超出我们从图像中手动提取有意义信息的能力。此外,手动图像分析的通量低,难以复制,通常一次只能测量几个特征。这已成为表型组学领域发展的一种阻碍。计算机视觉(Computer vision,CV)是从数字图像中自动提取和处理信息的一种方法,可以缓解这一长期存在的分析瓶颈。该综述阐述了CV在生态学中进行快速、全面和可重现的图像分析能力。
表型组学研究现状
数字图像的结构
首先,本文简要回顾了表型组学,认为生物学家可以使用CV有效地捕获表观水平数据。接下来,描述了基于图像的主要数据类型,并回顾了用于提取这些数据的CV方法(包括需要机器学习的技术和其他不需要机器学习的技术)。然后确定了常见的障碍,重点介绍了CV在生物学研究中最新的成功应用案例。最后,概述了CV在生物学中的应用前景。
使用信号处理的典型计算机视觉工作流程
使用全自动或半自动计算机视觉方法收集的不同类型的高维表型数据
综上所述,本文预计CV将成为生物学家工具箱的一个基本组成部分,可以进一步提高数据的质量和数量,并引发如何进行实证生态学和进化研究的变化。
来源:
Lürig M, Donoughe S, Svensson E I., et al. Computer vision, machine learning, and the promise of phenomics in ecology and evolutionary biology. 10.32942/osf.io/98cuw.
扫二维码用手机看
推荐新闻

发布时间 : 2022-05-20 11:45:57

发布时间 : 2022-05-13 10:56:43

发布时间 : 2022-05-09 12:21:00
视频展示
专题报道
联系我们
慧诺瑞德(北京)科技有限公司
地址:北京市海淀区西三旗街道建材城中路12号院8号楼2门
电话:010-62925490、82928854、82928864、82928874
传真:010-62925490-802
Email: info@phenotrait.com
邮编:100096
在线留言
关注我们

植物表型圈

植物表型资讯
慧诺瑞德(北京)科技有限公司版权所有 京ICP备15043840号 网站建设:中企动力 北二分 法律声明