2021年IPPN Webinar第2期


发布时间:

2021-03-30

来源:

本站

作者:

慧诺瑞德


 

本期报告介绍:

题目:High-throughput estimates of the radiation interception and use efficiency in wheat crops

报告人:Fred Baret教授

线上报告:已在百博智慧大讲堂发布

线上讨论时间:04月15日(周四)

 

【点击进入,观看报告回放】

学术问题,邮件反馈给ippn@plant-phenotyping.org

04月15日,直播学术讨论环节

 

报告人介绍:

Frederic Baret received a PhD in the use of remote sensing for crop monitoring in 1986. He is currently research Director at INRAE, and invited professor at Nanjing Agricultural University. He coordinated several National and European projects. He is involved in the development of radiative transfer models at several scales (soil, leaf, canopy) and their use for the retrieval of vegetation biophysical variables. He developed retrieval algorithms (CYCLOPES, GEOV1, GEOV2, GEOV3, Sentinel-2)  satellite and airborne sensors as well as close range remote sensing. He is deeply involved in the validation of remote sensing products and chaired the CEOS/LPV working group. He recently expanded his activity on high throughput phenotyping with the development of measurement systems as well as interpretation methods. He is in charge of the development of phenotyping methods in field conditions within the French Plant Phenotyping Network (PHENOME www.phenome-emphasis.fr) project. This includes the application of IoTs (sensors on fixed positions), phenomobiles (fully automatic robot rover) as well as the development of drone observations. He authored more than 255 research papers (h=61  WoK).

 

直播内容:

Biomass results  the accumulation of the assimilates produced by the photosynthesis. The efficiency with which the incoming radiation is transformed into biomass depends on two terms: the radiation interception efficiency (RIE) and the Radiation use efficiency (RUE). The first term, RIE, quantifies the fraction of photosynthetically active radiation intercepted by the canopy. It can be accurately estimated in the field  high-throughput measurements of the green fraction (GF) at 0° and 45° inclined directions. GF can be estimated  several systems including high-resolution RGB cameras, LiDAR or multispectral cameras. The second term, RUE, quantifies the efficiency with which the intercepted radiation is transformed into biomass. Its computation requires measurements or estimates of the total biomass, which currently is difficult to get accurately  high-throughput observations. This presentation draws the main advantages and limits of these techniques.

 

Coming up

"Phenotyping, ecophysiology and molecular physiology to characterize plant root system architecture and plant-plant and plant-microorganisms interactions"

Prof. Christophe Salon
INRAe, France
Pre-recorded talk will be available 15 April-6 May

Live Q&A with speaker: 6 May, 9:00 CET

 

"Digital phenotyping of individual plants and plant communities in the field"

Prof. Robert R. Junker
University of Marburg, Germany
Pre-recorded talk will be available 10 May-27 May

Live Q&A with speaker: 27 May, 14:00 CET

推荐新闻

石时之约|韩志国:透过表型数据,看见植物的喜怒哀乐!

本期石时之约,我们将对话慧诺瑞德(北京)科技有限公司总经理、国际植物表型学会(IPPN)执委会委员/工业分会副主席韩志国,一起从表型数据的科学角度,去读懂农作物的喜怒哀乐和前世今生。

慧科研、慧育种、慧种田——慧聚改变的力量

让我们“慧聚”在一起,为“慧科研、慧育种、慧种田”赋能。

高通量植物表型平台建设注意事项

育种,是在给定的环境条件下,选择各种表型指标(产量、品质、抗性)最优的基因型材料的过程(AI育种,从这里起步)。育种工作中大约70%的工作量来自表型观察测量和筛选,是最耗人力物力的过程。

作物生理表型测量基础原理

生理表型测量的核心在于“早、快”,要在肉眼可见之前就能测量并预判出变化趋势,才是这个技术的核心价值。叶绿素荧光成像,恰好满足了这个要求。