学术中心
在自监督学习框架上使用域随机化对种子进行分类
- 分类:植物表型资讯
- 作者:PhenoTrait
- 来源:本站
- 发布时间:2021-04-26 06:10
- 访问量:
【概要描述】本文利用对比学习和领域随机化的概念达到了该目的。简而言之,领域随机化是一种将在包含模拟对象图像上训练的模型应用于真实世界对象的技术。从真实世界图像的代表性样本中生成合成图像的使用,减轻了对测试材料样本量大的问题。
在自监督学习框架上使用域随机化对种子进行分类
【概要描述】本文利用对比学习和领域随机化的概念达到了该目的。简而言之,领域随机化是一种将在包含模拟对象图像上训练的模型应用于真实世界对象的技术。从真实世界图像的代表性样本中生成合成图像的使用,减轻了对测试材料样本量大的问题。
- 分类:植物表型资讯
- 作者:PhenoTrait
- 来源:本站
- 发布时间:2021-04-26 06:10
- 访问量:
种子表型鉴定的第一步是种子类型的鉴定,即对种子的生长、发育、耐性、抗性、生态、产量等复杂性状进行综合评价,并对形成更复杂性状的参数进行测定。一般来说,植物研究人员会检查种子的视觉属性,如大小、形状、面积、颜色和纹理,确定种子类型,但这一过程既繁琐又费力。计算机视觉和深度学习领域的进步催化了卷积神经网络(CNN)的发展,可以利用该技术进行图像分类。虽然该技术分类效率很高,但目前仍面临一个关键的瓶颈:在将CNN投入分类任务之前,需要大量的标记数据来训练CNN。本文利用对比学习和领域随机化的概念达到了该目的。简而言之,领域随机化是一种将在包含模拟对象图像上训练的模型应用于真实世界对象的技术。从真实世界图像的代表性样本中生成合成图像的使用,减轻了对测试材料样本量大的问题。
ResNet-50、SimCLR、MoCo和BYOL的分类报告
ResNet-50、SimCLR、MoCo和BYOL的培训和验证精度及损失
作为工作的一部分,本文应用三种不同的自我监督学习框架,即SimCLR、动量对比(MoCo)和构建自己的潜在(BYOL),其中ResNet-50作为每个网络中的主干,以五种不同类型种子图像(即油菜、糙米、高粱、大豆和小麦)的合成图像数据集为材料,进行试验。当自监督模型仅使用合成数据集5%的标签进行微调时,结果显示,MoCo,即产生所讨论自监督学习框架的最佳性能模型,在测试数据集上达到77%的准确率,仅比ResNet-50在100%标签上训练的90%的准确率低13%。
类似的油菜、糙米的颜色直方图
来源:
Margapuri V, Neilsen M. Classification of Seeds using Domain Randomization on Self-Supervised Learning Frameworks. arXiv:2103.15578.
扫二维码用手机看
推荐新闻

发布时间 : 2022-11-13 07:26:55

发布时间 : 2022-05-20 11:45:57

发布时间 : 2022-05-13 10:56:43
视频展示
专题报道
联系我们
慧诺瑞德(北京)科技有限公司
地址:北京市海淀区西三旗街道建材城中路12号院8号楼2门
电话:010-62925490、82928854、82928864、82928874、18600875228
传真:010-62925490-802
Email: info@phenotrait.com
邮编:100096
在线留言
关注我们

植物表型圈

植物表型资讯
慧诺瑞德(北京)科技有限公司版权所有 京ICP备15043840号 网站建设:中企动力 北二分 法律声明