学术中心
使用卷积神经网络自动检测油棕气孔
- 分类:植物表型资讯
- 作者:PhenoTrait
- 来源:本站
- 发布时间:2021-08-19 06:10
- 访问量:
【概要描述】气孔密度是耐旱油棕育种选择的重要性状,然而,它的测量却非常繁琐。为了加快这个过程,我们开发了一个自动化系统。
使用卷积神经网络自动检测油棕气孔
【概要描述】气孔密度是耐旱油棕育种选择的重要性状,然而,它的测量却非常繁琐。为了加快这个过程,我们开发了一个自动化系统。
- 分类:植物表型资讯
- 作者:PhenoTrait
- 来源:本站
- 发布时间:2021-08-19 06:10
- 访问量:
气孔密度是耐旱油棕育种选择的重要性状,然而,它的测量却非常繁琐。为了加快这个过程,我们开发了一个自动化系统。
显示使用 MobileNetV127 作为主干的 SSD28 的图表
本研究收集了三个棕榈发育阶段具有代表性的气孔图
研究人员收集了从苗圃(1年)、幼年(2-3年)和成熟(>10年)的128棵棕榈树的叶片样本,建立油棕特定的气孔检测模型。首先,将显微图像分割成小块,然后通过转移学习训练气孔目标检测卷积神经网络模型。然后,在从幼树(A)、幼树(B)和多产成年树(C)的三个独立油棕种群采集的叶片样本上测试检测模型。以精度和召回率衡量的检测准确度,A 组为 98.00% 和 99.50%,B 组为 99.70% 和 97.65%,C 组为 99.55% 和 99.62%。接着,使用在不同显微镜和不同条件下(D)拍摄的气孔图像,将该检测模型交叉应用于另一组成年棕榈,其准确率和召回率分别为99.72%和96.88%。这表明所建立的模型具有很好的通用性,并且具有很高的可迁移性。随着该检测模型的完成,可以加快气孔密度的测量。这反过来将加速抗旱育种的选择。
测试集(A、B、C和D)的精度和召回箱线图
基于全显微图像的气孔检测
来源:
Kwong Q, Wong Y, Lee P, et al. Automated stomata detection in oil palm with convolutional neural network. Scientific Reports volume 11, Article number: 15210 (2021). https://doi.org/10.1038/s41598-021-94705-4.
扫二维码用手机看
推荐新闻

发布时间 : 2022-11-13 07:26:55

发布时间 : 2022-05-20 11:45:57

发布时间 : 2022-05-13 10:56:43
视频展示
专题报道
联系我们
慧诺瑞德(北京)科技有限公司
地址:北京市海淀区西三旗街道建材城中路12号院8号楼2门
电话:010-62925490、82928854、82928864、82928874
传真:010-62925490-802
Email: info@phenotrait.com
邮编:100096
在线留言
关注我们

植物表型圈

植物表型资讯
慧诺瑞德(北京)科技有限公司版权所有 京ICP备15043840号 网站建设:中企动力 北二分 法律声明