学术中心

全部分类
您现在的位置:
首页
/
/
国际植物表型学会系列webinar第8期

国际植物表型学会系列webinar第8期

  • 分类:首页学术活动
  • 作者:慧诺瑞德
  • 来源:植物表型圈
  • 发布时间:2020-09-15 13:21
  • 访问量:

【概要描述】IPPN webinar - 盐胁迫专场

国际植物表型学会系列webinar第8期

【概要描述】IPPN webinar - 盐胁迫专场

  • 分类:首页学术活动
  • 作者:慧诺瑞德
  • 来源:植物表型圈
  • 发布时间:2020-09-15 13:21
  • 访问量:
详情

题目:IPPN webinar - 盐胁迫专场

报告人:Jasper Lamers (MSc) & Dr. Mariam S. Awlia

时间:9月18日(周五)20:00-21:00

直播平台:百博智慧直播间植物表型频道

报告人介绍:

 

【点击进入直播间】

 

Jasper Lamers (MSc):

Expert in plant sciences, image analysis, tranomics, Python and R.

Since 2018 PhD candidate in Plant Physiology, Wageningen University & Research

2017 Master in Molecular Life Sciences, Wageningen University & Research

2016-2017 Internship, Oxford University

2013-2014 Internship, The University of Sydney

 

Dr. Mariam S. Awlia:

Expert skills in plant science, plant genetics, science communication and big data analysis using the statistical program R.

Earned an all-inclusive scholarship by the King Abdullah University of Science and Technology (KAUST) to obtain BSc, MSc and PhD degrees.

Experienced in conducting global and local collaborations across research facilities, such as in Saudi Arabia, Australia and Czech Republic.

Since 2019 Scientific editor, Centre of Excellence for Life Sciences Cactus Global Communications

Since 2019 Postdoc in Plant Science, University of Cape Town (UCT)

2018 PhD in Plant Science, KAUST

2013 Master in Plant Science, KAUST

 

报告内容:

Abstract(s):

1)

Plants are exposed to an ever-changing environment to which they have to adjust accordingly. Their response is tightly regulated by complex signaling pathways that all start with stimulus perception. Here, we give an overview of the latest developments in the perception of various abiotic stresses, including drought, salinity, flooding, and temperature stress. We discuss whether proposed perception mechanisms are true sensors, which is well established for some abiotic factors but not yet fully elucidated for others. In addition, we review the downstream cellular responses, many of which are shared by various stresses but result in stress-specific physiological and developmental output. New sensing mechanisms have been identified, including heat sensing by the photoreceptor phytochrome B, salt sensing by glycosylinositol phosphorylceramide sphingolipids, and drought sensing by the specific calcium influx channel OSCA1. The simultaneous occurrence of multiple stress conditions shows characteristic downstream signaling signatures that were previously considered general signaling responses. The integration of sensing of multiple stress conditions and subsequent signaling responses is a promising venue for future research to improve the understanding of plant abiotic stress perception.

  

2)

Salt stress severely and rapidly reduces plant growth prior to shoot ion accumulation. The genetic components of this early response to salt stress are largely unknown. Using high-throughput non-destructive phenotyping with RGB and chlorophyll fluorescence imaging, the early salt stress responses of 191 Arabidopsis accessions were screened within one hour after salt treatment and up to seven consecutive days, capturing traits related to rosette growth, shape, colour and photosynthetic activity. Multivariate analysis and machine learning models identified that photosynthetic activity in the light-adapted state (Fv´/Fm´) is a major determinant of plant performance during the early responses to salt stress, while dark-adapted maximum quantum yield (QY max) contributed to plant performance at a later stage. Genome-wide association study (GWAS) identified over one thousand associations specific to salt stress across 29 unique traits measured through time yielding a total of 438 traits. Two loci associated with QY max and Fv´/Fm´ were validated using T-DNA ion lines, where an unknown protein kinase was identified that seems to affect Fv´/Fm´ under salt stress, thereby reducing plant growth and performance under salinity. Our work demonstrates how the combination of high-throughput phenotyping, multivariate analysis and GWAS can lead to new insights in studying temporal stress responses, identifying associations among different traits, and identifying new genetic components of salinity tolerance.

关键词:

扫二维码用手机看

推荐新闻

秋季招聘:慧聚改变的力量
秋季招聘:慧聚改变的力量
发布时间 : 2022-09-09 16:05:03
让我们“慧聚”在一起,为“慧科研、慧育种、慧种田”赋能。
查看详情
让我们“慧聚”在一起,为“慧科研、慧育种、慧种田”赋能。
高通量植物表型平台建设注意事项
高通量植物表型平台建设注意事项
发布时间 : 2022-05-20 11:45:57
育种,是在给定的环境条件下,选择各种表型指标(产量、品质、抗性)最优的基因型材料的过程(AI育种,从这里起步)。育种工作中大约70%的工作量来自表型观察测量和筛选,是最耗人力物力的过程。
查看详情
育种,是在给定的环境条件下,选择各种表型指标(产量、品质、抗性)最优的基因型材料的过程(AI育种,从这里起步)。育种工作中大约70%的工作量来自表型观察测量和筛选,是最耗人力物力的过程。
作物生理表型测量基础原理
作物生理表型测量基础原理
发布时间 : 2022-05-13 10:56:43
生理表型测量的核心在于“早、快”,要在肉眼可见之前就能测量并预判出变化趋势,才是这个技术的核心价值。叶绿素荧光成像,恰好满足了这个要求。
查看详情
生理表型测量的核心在于“早、快”,要在肉眼可见之前就能测量并预判出变化趋势,才是这个技术的核心价值。叶绿素荧光成像,恰好满足了这个要求。
AI育种,从这里起步
AI育种,从这里起步
发布时间 : 2022-05-09 12:21:00
植物表型本身就是一个跨学科领域,自带AI基因。而植物表型服务的对象就是育种和种植。AI通过植物表型赋能育种,是AI育种的重要发展方向之一。让我们用表型之“瞳”,赋农业之“慧”。
查看详情
植物表型本身就是一个跨学科领域,自带AI基因。而植物表型服务的对象就是育种和种植。AI通过植物表型赋能育种,是AI育种的重要发展方向之一。让我们用表型之“瞳”,赋农业之“慧”。

视频展示

植物表型架起从数字农业到智慧农业的桥梁
00:30:11
所属分类:
视频展示
发布时间:
2020/12/10
关键词:

专题报道

搜索
确认
取消

联系我们

慧诺瑞德(北京)科技有限公司

地址:北京市海淀区西三旗街道建材城中路12号院8号楼2门 
电话:010-62925490829288548292886482928874
传真:010-62925490-802
Email:
info@phenotrait.com

邮编:100096

在线留言

关注我们

这是描述信息

植物表型圈

这是描述信息

植物表型资讯

慧诺瑞德(北京)科技有限公司版权所有      京ICP备15043840号    网站建设:中企动力   北二分     法律声明